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Analysis of the Time Response of Nonuniform

Multiconductor Transmission Lines with a

Method of Equivalent Cascaded

Network Chain
Jun-Fa Mao and Zheng-Fan Li

Abstract—In this paper nonuniform multiconductor trans-
mission lines are considered to be equivalent to a cascaded chain
of many multiport subnetworks which are made of short sec-
tions of uniform lines. The ABCD matrices of the subnetwortm

can be obtained by the matrix series expansions of their ana-
lytic expressions. As long as the number of the subnetworks is
large enough to reflect the line nonnniformity fully, the expan-

sions will converge so fast that a few of low-order series terms

will be good approximations. After the overall ABCD matrix of
the cascaded network chain is evaluated from that of each sub-

network, the time of response of transmission lines can be ana-
lyzed. The lines may have frequency-dependent parameters and

arbitrary nonlinear terminals. Furthermore, transmission sys-
tems with branches uniform and nonuniform transmission lines

can be studied with this method conveniently. The analysis ac-
curacy and efficiency are discussed in detail.

I. INTRODUCTION

M ULTICONDUCTOR transmission lines are usually

used as interconnections in large-scale high-speed

integrated circuits. When the signal speed is relatively

high, analysis of the time response of such lines becomes

necessary to properly design and analyze integrated cir-

cuits. Many authors [1]–[7] have studied various kinds of

transmission lines with various methods. Relatively

speaking, the methods and techniques for uniform trans-

mission lines are more mature and perfect. For nonuni-

formly coupled transmission lines, papers such as [6], [7]

have devoted some efforts to the analysis, but the fre-

quency-dependence of line parameters (such as that of re-

sistance due to the skin effect) wasn’t dealt with in these

papers. In a recent paper [8], tapered transmission lines

were investigated by the method of scattering parameters.

The frequency-dependence of scattering parameters due

to the change in effective dielectric constant was consid-

ered.

In this paper, a method of equivalent cascaded network

chain is developed to analyze the time response of non-

uniform transmission lines. N-conductor nonuniform lines
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are considered to be equivalent to a cascaded chain of a

series of 2N-port subnetworks. Each subnetwork is ap-

proximated to be made of N-conductor uniform lines with

fairly short length. The ABCD matrices of these subnet-

works can be derived by solving the telegraphers’ equa-

tions in the frequency-domain, with the solutions in the

form of matrix exponentials. To calculate the matrix ex-

ponential, we expanded them into matrix infinite series,

then the expansions of the subnetwork ABCD matrices are

gotten with very simple series terms. From the expansions

a useful property of the subnetwork ABCD matrices rel-

evant to frequency is proven. As long as the number of

subnetworks is large enough to reflect the line nonuni-

formity, the series will converge so fastly that only a few

of low-order series terms are good approximations to the

subnetwork ABCD matrices. Segmenting the nonuniform

lines into many subnetworks has two advantages. One is

that it deals with the nonuniformity of lines, another is

that it makes the expanded series converge more fastly.

After the ABCD matrices of all subnetworks have been

evaluated, the overall ABCD matrix of the cascaded net-

work chain can be obtained simply. Combined with the

boundary conditions and the techniques of fast Fourier
transfom and numerical convolution, analysis of the time
response can be made. Nonuniform lines having fre-

quency-dependent parameters and arbitrary terminals can

be analyzed in this way. Furthermore, transmission sys-

tems with branches of uniform and nonuniform transmis-

sion lines can be investigated. The errors and the advan-

tages over some other existing analysis methods are

discussed in detail before concluding this paper, which

demonstrates that this method of equivalent cascaded net-

work chain is reliable and efficient when applied to ana-

lyze nonuniform transmission lines.

II. THEORY

Consider the multiconductor transmission line illus-

trated in Fig. 1. Under the quasi-TEM approximation, it

satisfies the telegraphers’ equations, which can be written

in the frequency-domain as

d[v(x, w)] /ax = – [2(X,w)] [Z(X>w)] (la)
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Fig. 1. A nonuniform multiconductor transmission line.

13[z(.x,w)] /ax = – [Y(X> w)] [J’@, w)] (lb)

where [V(x, w)], [Z(.Z, w)] are the column voltage and cur-

rent vectors at position x and angular frequency w, and

[Z(x, w)] = [Z?(x, w)] + jw [L(.x, w)]

[Y(X> w)] = [G@, w)] + jw[c(x, w)]

with [L(x, w)], [C(x, w)], [R(x, w)] and [G(x, w)] being

the inductance, capacitance, resistance and conductance

N by N (N is the number of signal conductors) matrices

per unit length. For nonuniform lines, (la) and (lb) al-

most cannot be analytically solved except for a few spe-

cial kinds of transmission lines such as single exponential

lines. In this chapter the nonuniform transmission lines

are considered to be equivalent to a cascaded chain of

many subnetworks to get the numerical solutions.

1. Equivalent Cascaded Network Chain of Nonuniform

Lines

Let the nonuniform ‘transmission line with a length H

in Fig. 1 be uniformly segmented into m sections (see

Fig. 2), then the length of each section is h = H/m. If m

is large enough, all sections can be approximated to be

uniform, i.e., [2(x, w)] and [Y(x, w)] stay constant within

every section. Let [Vi], [Zi] (i = 1, 2, “ “ “ , m + 1) denote

the voltage and current vectors at the ith segmenting point:

[Vi] = [V((i - l)h, w)]

[Z,] = [l((i - l)h, w)].

[Zi] and [~] denote the [2(x, w)] and [Y(x, w)] at the ith
segmenting point. Such segmenting way actually seg-

ments the nonuniform lines into m cascaded subnetworks,

which are made of short uniform lines. From the theory

of network analysis, it is most convenient to calculate the

overall network’ parameters of a cascaded network chain

if ABCD matrices are taken. If [Ai] is the ABCD matrix

of the i th subnetwork, [A] is the overall ABCD matrix,

then

‘(:3=[Ai](:2:)
(:)=[4( :;;:)

(2a)

Fig. 2. The equivalent cascaded network chain of a nonuniform line.

[A] = [A,] [Az] “ “ . [An] (3)

where [A 1], [A2], [A3] and [A4] are matrix partitions of

[A]. Note that all subnetworks are made of uniform lines,

so their ABCD matrices can be analytically derived from

the solutions of the telegraphers’ equations in the fre-

quency-domain [9]: .

[Vi] = .5(e[D’]fi + e-[~’]~) [Vi+l]

+ .5(eL~ilk – e ‘[D’]*) [Z!] [1~+ 1] (4a)

[Z,] = .5[Z~]-l(e[p’1~ + e ‘[d’]~) [Z!] [Z,+,]

+ .5[Z~]–l(e[6’1~ – e–[~’]k) [Vi+l]

i=l,2, ”””, m (4b)

where

[@i]= ([zil [LI)l’2

[Z!] = [~i]-’[Z,] = [pi] [~]-’

so we have

([A”li] [A2i
[Ai] =

[A3,] [A4,

in which

) (5a)

(5b)

[A2i] = .5(e[6’]~ – e ‘[p’]~) [Z!] (5C)

[A3i] = .5[Z~]-l(eI~~~ – e -[p,]~, (5d)

[A4i] = .5[Z~]-l(e ‘[6’1~ + e ‘[~’]~) [Z?] . (5e)

These expressions are accurate for each subnetwork under

the uniform approximation. In the next section the matrix

exponential encountered in these expressions are ex-

panded into infinite matrix series to numerically calculate

the subnetwork ABCD matrices.

2. Calculation of the Subnetwork ABCD Matrices

In the expressions of the subnetwork ABCD matrices

derived in the above section, there are matrix exponential

and matrix square root operations, which are usually re-

dundant. Several methods, such as mode decomposition,

Laplace transform, and the method of undetermined coef-

ficients [10], can be used to calculate the matrix exponen-

tial, but these methods are inconvenient and time-con-

suming to perform on computers, so here we expand the

matrix exponential into matrix infinite series. The matrix
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square root operation is eliminated as a by-product. Then

the expansions of the subnetwork ABCD matrices are ob-

tained with very simple series terms. The infinite matrix

series of e[e’]~ and e ‘[c’]~ are [10]:

Inserting these series into expressions (5b)-(5e), and not-

ing [ ~i] = ([Zi] [YJ) 1/2, yield

[Al,] = 1 + ~[Zi][fi]h2 + “ “ “

1

+ (2k – 2)!
([Zi] [~]h2)k-’ + “ “ “

=[a1]+[a2] +””” +[aJ +.”.

[~zil = [ZJh + ~ [Zil [U [ZJ~3 + “ “ “

1

+ (2k – 1)!
([Zi] [~] h2)~- l[Zi] h + “

[A311= [xlh + ~ [K] [Zi] [~]~i)~3 + “ “ “

1

+ (2k – 1)!
[X] h([Z,] [~] h2)’ - ‘ + “ “

[A4;] = 1 + ~[Yi][Zi]h2 + “ “ “

1 *k– l+...

+ (2k – 2)! ‘[yi] ‘Zi] h )

where

(6)

(7)

(8)

(9)

1 2k–1

‘ak] = (2k – 2)! ‘[zi] ‘Yi] h )
k=l,2, ”””.

In paper [9] several properties of [A Ii], [A2i], [A3i] and

[A4J are given, the most helpful one for calculating the

subnetwork ABCD matrices is that [A 1i] = [A4i]’. Here

another userful property is derived:

[Al(w)] = [Ali(–~)]* (lOa)

[A2i (~) = [A2i ( –~)]” (lOb)

[A3i (W) m [A3i (–~)]” (1OC)

[A4i(w)] = [A4i(–~)]* (lOd)

i.e., [A li (w)], [A2i (w)], [A3i (w)] and [A4i (w)] are the

conjugate matrices of [A li ( – w)], [A2i ( – w)], [A3i ( – w)]
and [A4i ( – w)], respectively.

Proo$

we have

Hence,

similarly,
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From the physical point of view, generally

[R~(W)] = [Ri(– W)]

[Li(W)] = [Li (– W)].

[Zl(w)] = [Zl(– w)]*

[Yi(w)] = [~(–w)]”.

According to the property of complex function, there is

[Zi(w’)1[X (w)] = ([zi(– ‘)1 [L (–W)])*

so(l Oa)-( 10d) are right from (6)–(9) for [A li], [A2J, [A3i]

and [A4i].

The matrix infinite series (6)-(9) are absolutely con-

vergent, and their convergence rates are in relation with

the magnitude of each eigenvalue (I hi, ~1, i = 1, 2, “ “ “ ,

m,k=l,2, ”””, N) Ofthe product of [Zi][~] h 2. The

smaller the magnitude of hi, k, the better the convergence

rates. From the definition of eigenvalue:

[z,] [u] h2[ei,k] = ~i,k[ei,k] (11)

where [ei, k] is the eigenvector corresponding to hi, k, it can

be seen that for given transmission lines, i.e., for given

product of [Zi] [YJ, larger number (m) of subnetworks will

produce smaller I ~i, kl and better convergence rates. Ac-

tually, as long as the number (m) of subnetworks is large

enough (h is small enough) to reflect the line nonuniform-

ity fully, these matrix series will converge so fast that

only a few of low-order series terms may be good ap-

proximations to [Ali], [A2i], [A3i] and [A4i]. For example

E}. ~ [aJ] may be good approximation to [A li] even if k

= 3. As a special case, if only the first terms of the matrix

series (6)–(9) are retained, then this is just the well known

finite-difference approximation.

From the above discussion, segmenting the transmis-

sion lines into many cascaded subnetworks has two ad-

vantages, one is that the nonuniformity of lines can be

dealed with, another is that the convergence rates of the

expansions of the subnetwork ABCD matrices become

better. There is something to be pointed out here, The

segmentation of lines here in this paper has a important

difference from that in the characteristics method [7]. In
the characteristics method, after the decoupling pro-

cedure, the effective electric length of each decoupled sin-

gle signal conductor becomes different because of the dif-

ferent transmission mode velocities of the transmission

system. Furthermore, the segmentation is restricted by the

value of time steps. This makes it difficult to segment each

decoupled conductor into integer number of sections at

the same time, and suitable rounding off must be taken.

This will introduce errors to the time response analysis of

transmission lines, especially of quiescent lines. While

the segmentation in the method in this paper is carried out

independent y, the number of time samples and the length

of time steps have no influence on it, so this problem
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doesn’t arise. On the other hand, unlike the finite-differ-

ence method, several low-order series terms (not the first

term only) are retained here, so the number of subnet-

works is unnecessarily very large to get high accuracy.

After the ABCD matrices of all subnetworks have been

obtained, (3) is then used to calculate the overall ABCD

matrix of the cascaded network chain which is the equiv-

alent of the original transmission line to be analyzed. With

the boundary conditions known, time response analysis

can be performed as follows.

3. Analysis of the Time Response of Transmission Lines

Noting that [Vl] = [V(O, w)], [Zl] = [Z(O, w)], [V~+ J

= [V(H, w)] and [Z~ + J = [Z(H, w)], from (2b) there are

[V(O, w)] = [Al] [~(~, w)] + [A2] [Z(H, w)] (12a)

[Z(O, w)] = [A4] [Z(H, w)] + [A3] [V(H, w)]. (12b)

Equations (12a) and ( 12b) combined with the boundary

conditions are enough to carry out the time response anal-

ysis. For linear terminals, the boundary conditions can be

expressed in the frequency-domain:

[V(O, w)] = [E(w)] – [21(w)] [Z(O, w)] (13a)

[V(H, w)] = [22(W)] [Z(H, w)] (13b)

in which [21(w)] and [22(w)] are the Z-parameters of the

starting network and load network respectively, [E(w)] is

the Fourier transform of source voltage vector. After the

analysis at each discrete sample frequency is performed,

the time response can be obtained by the inverse fast

Fourier transform (IFFT). For nonlinear terminals, the

boundary conditions are generally given in the time-do-

main:

[V(O, t)] = fi([Z(O, t)] + [E(t)] (14a)

[V(H, t) = fi([z(H, t)]) (14b)

in which ~1(” ) and f2(” ) indicate two nonlinear functions.

Inversely Fourier transforming equations (12a) and (12b)

yields

[Z(O, t)] = [A4(t)]

where [Al(t)], [A2(t)

[V(O, t)] = [Al(t)] * [V(H, t)] + [A2(t)] * [I(H, t)]

(15a)

* [Z(H, t)] + [A3(t)] * [V(H, t)]

(15b)

, [A3(t)] and [A4(t)] are the inverse

Fourier transforms of [Al(w)], [A2(w)], [A3(w)] and

[A4(w)] which can be obtained by the technique of IFFT,

“*” denotes a convolution, for example:

!

t

[Al(t)] * [V(H, t)] = [Al(t – T)] [V(H, T)] d~
o

in which the integration can be approximated by a sum-

mation when calculated on computers. The system of

equations (14a), (14b), (15a) and (15b) is nonlinear and

can be solved by the Newton–Raphson method marching-

on-in-time to obtain the time response [V(O, t)], [Z(O, t)],

[V(H, t)] and [1(H, t)]. After the waveforms at the two

terminal ends of transmission lines are obtained, the re~ ,

sponse at any segmenting points within the two ends can

be evaluated, which is easy to see from Fig. 2.

Uniform transmission lines can also be analyzed by this

method, but the most economical way is to consider a

whole transmission line to be one subnetwork and evalu-

ate the ABCD matrix with the mode decomposition

method. As to complicated transmission systems with

branches of uniform and nonuniform lines, both the meth-

ods can be used, i.e., the nonuniform lines are segmented

into a series of cascaded subnetworks the ABCD matrices

of which can be obtained through the expansions of ma-

trix exponential, while the uniform lines are equivalent

to only one subnetwork the ABCD matrix of which can be

evaluated by the mode analysis. Thus much CPU time

will be saved. After the ABCD matrix of each branch is

obtained, the overall ABCD matrix of the transmission

system can be evaluated according to the connecting

mode. Combined with the boundary conditions at the ter-

minal ends of the branches, time response analysis can be

performed in a similar way to that described above.

III. NUMERICAL EXAMPLES

Example 1: A Linearly Loaded Two-Conductor

Nonuniform Line (Fig. 3)

The transmission system in this example is similar to

that described in [6]. The line parameters are

l(x) = 387/(1 + k(x))

lm(x) = k(x) i(x)

c(x) = 104.13/(1 – k(x))

cm(x) = – k(x) c(x)

k(x) = .25(1, + .6 sin (TX + 7r/4))

()
[w, ~lz

r(x) = 1.2 ~ , r~(x) = O

g(x) = gin(x) = o

where l(x), c(x), r(x) and g(x) are the diagonal elements

of the 2-by-2 inductance, capacitance, resistance and con-

ductance matrices respectively, the unit of which are

nH/m, pF/m, Q/m and nS/m; lJx), cJx), rJx) and

g~(x) are the corresponding second diagonal elements.
The unit of w is MHz. The crosstalk voltage at the middle

point of the quiescent line given in Fig. 4 compares fa-

vorably to that given in [6], which ensures the reliability

of this method.

Example 2: A Nonlinearly Loaded T@-ee-Conductor

Nonuniform Line

The crossectional view and schematic of the transmis-

sion system in this example are given in Fig. 5. There

have been many papers published for approaching the dis-

tributed parameters for multiconductor transmission lines

[1 1], [12], and here the method and program given in [13]
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Fig. 3. The transmission system in example 1.
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Fig. 4. The crosstalk voltage at the middle of the quiescent line in example

1.
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V1(>)=W( X)=(2+5X) pm

(a)

E(v)
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0.01 .11 .12

1- 7
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Fig. 5. The cross sectional view (a) and schematic (b) of the transmission
system in example 2.

is used. Because the transverse sections of the signal con-

ductors in this system are fairly small, the resistances are

approximated to be the dc values and independent of fre-

quency. So are the other parameters. The nonlinear loads

are characterized by the relation:

i = 10(e40u – 1)

where i is the current in nA following through the loads

T
_ \l~

‘30.8
2 ------ V4
z>o.6-

-...-,,.. .--:
0.4- ;

o.2- / ~

4

0.0 ----”””:

~
o. u (), 2 0.3 0.4 0,!

Time (ns)

T

g o.12-
$.

z
> 0.06-

0.00-

-0. 06- ~----
.....-...:,:- :......- ,.

-0’’2L——_J—J
0.0 0.1 0.2 0.3 0.4 0.5

Time(ns)

Fig. 6. The response voltages in example 2.

and v is the corresponding drop in V. Fig. 6(a) and (b)

show the response obtained with this method.

Example 3: A Transmission System with Branches of

Uniform and Nonuniform Lines

The schematic of the transmission system in this ex-

ample is given in Fig. 7. It includes two branches of uni-

form lines and one branch of nonuniform line. The non-

uniform line is just that in example 1, and the two uniform

line branches have the same parameters:

‘L] ‘[3:.7 $“71nH’m

[

144 –6.4
[c] =

–6.4 144 1
pF/m

‘R] ‘[’:.9 ::”91 “ (W2mQ/m

[

905
[G] = 1--11.8.IWI ns,m

–11.8 905 21r

in which w is still in MHz. Fig. 8(a) and (b) show parts

of the response waveforms. Note that the voltages ( V5

and V6 in figure) at the end of branch #3 are very small

in magnitude. This can be understood as that the induc-

tances connected in series in this branch are unfavorable

for high speed signals to transmit.

In the above three examples, the numbers of frequency
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Y

Fig. 7. The transmission system in example 3
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Fig. 8. The response voltages in example 3.

and time samples are all 256, the numbers of low-order

series terms taken are all 4, and the numbers of cascaded

subnetworks for nonuniform lines are 80, 60, and 80 re-

spectively. On a computer of PC-386/20, the CPU times

of these examples are all a few minutes.

IV. ERROR AND CALCULATION EFFICIENCY ANALYSIS

Apart from the aliasing errors introduced by the finite

sample points for FFT and IFFT, there are two factors in

this method which may bring errors to the transient anal-

ysis, one is the approximation that all subnetworks are

made of uniform lines, another is the fact that only a few

terms of the matrix infinite series are taken. Obviously,

the more the terms of series taken, the more accurate the

evaluation of the subnetwork ABCD matrices. However,

if we enlarge the number (m) of subnetworks, three things

will occur. One is that the uniformity approximation for

each subnetwork will be more reasonable; the second is

that the convergence rates of the expansions of matrix ex-

ponential will be better, so the evaluation of the subnet-

work ABCD matrices will become more accurate with the

same number of series terms taken; the last is that the

number of times of error accumulation will be larger. Ap-

plication practices show that the overall result of these

three factors is that the analysis accuracy will be higher

with more subnetworks if a suitable number of low-order

series terms is retained. So there are two ways for getting

a given accuracy: enlarging the number of subnetworks

and enlarging the number of low-order series terms taken.

But under the presupposition that the number of subnet-

works is large enough to reflect the line nonuniformity

fully, enlarging the number of low-order series terms is

more efficient to save the CPU time, which can be seen

from the expansions (6)-(9). As a criterion, m is usually

chosen to be only large enough to reflect the line nonun-

iformity (i.e., further enlarging the value of m will not

change the results), then necessary number of series terms

is taken to get high accuracy. This is the main advantage

of the method in this paper over the finite-difference ap-

proximation where very large m is required to get high

accuracy, and sometimes divergent results may occur due

to the too many times of erior accumulation, especially

when the terminals are nonlinear.

Differing from the mode analysis method or the scat-

tering parameter method, the procedure of mode decom-

position in the frequency-domain is omitted here in this

method by introducing the ABCD matrices of transmis-

sion lines, so there is no necessity of tracing the incident

and reflective waves, which makes the time response

analysis procedure more simple. As mentioned before, the

matrix exponential in the expressions of the subnetwork

ABCD matrices can also be calculated by the mode de-

composition method. In order to ensure the reliability and

advantage in computation speed of (6)–(9). One uniform

transmission line in example 3 (branch #1 or branch #2)

is considered. The ABCD matrix of this line is accurately

computed by the mode decomposition method using (5b)-

(5e), and numerically computed by segmenting this line

into 80 sections. Four terms of the infinite matrix series

in (6)–(9) are taken when computing the AIICD matrix of

a section. Comparison of the results is given in Table I.
Note that tl and t2 in the table are comparable because the

computation time of the mode decomposition method is

independent of the line length. Transmission lines with

larger N have also been studied and similar results are

obtained (both t I and t2 are proportional to N3). The table

also shows that the lower the frequencies, the less the er-

rors for the ABCD matrices. This property is beneficial

for improving the analysis accuracy, because for general

signal pulses, the magnitudes of the components at lower

frequencies are larger than that at higher frequencies.



954 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO, 5, MAY 1992

TABLE I

COMPARISON OF THE ABCD MATRIX VALUES AND COMPUTATION TIMES

ABS1 ABS2

Frequency 1000 t2 1000 t,
(GHz) Appr. Accu Appr. Accu (second) (second)

5 0.1832 0.1832 38.95 38.95 3.79 17.14
10 0.3746 0.3746 37.10 37.10 3.79 16.21

15 0.06819 0.06820 3.260 3.261 3.79 16.26
20 0.6201 0.6201 25.66 25.67 3.79 17.13

25 0.8200 0.8221 19.33 19.39 3.79 16.37

30 0.1891 0.1960 1.793 1.762 3.79 17,13

ABS1—the magnitude of [A 1( 1, 2)]; ABS2—the magnitude of [A2(2, 2)]; cl—the computation time for

[A 1] and [A2] in the mode decomposition method; tz–the computation time for [A 1,] and [,42i] of a section

in the numerical method.

V. CONCLUSION

Analysis of the time response of nonuniform transmis-

sion lines is carried out by segmenting the transmission

lines into a series of cascaded subnetworks in this paper.

All subnetworks are approximated to be made of short

sections of uniform lines, the ABCD matrices of which

can be obtained from the expansions of their analytic

expressions derived from the solutions of telegraphers’

equations in the frequency-domain. There are two advan-

tages in segmenting the lines: one is that the nonunifor-

mity of lines can be dealt with; another is that the ex-

panded matrix infinite series can converge faster. As long

as the number of subnetworks is large enough to reflect

the line nonuniformity, a few of low-order series terms

will be good approximations to the subnetwork ABCD

matrices. A wide range of transmission systems can be

analyzed by this method with little CPU time and satis-

factory accuracy.
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