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Analysis of the Time Response of Nonuniform
Multiconductor Transmission Lines with a
Method of Equivalent Cascaded
Network Chain

Jun-Fa Mao and Zheng-Fan Li

Abstract—In this paper nonuniform multiconductor trans-
mission lines are considered to be equivalent to a cascaded chain
of many multiport subnetworks which are made of short sec-
tions of uniform lines. The ABCD matrices of the subnetworks
can be obtained by the matrix series expansions of their ana-
lytic expressions. As long as the number of the subnetworks is
large enough to reflect the line nonuniformity fully, the expan-
sions will converge so fast that a few of low-order series terms
will be good approximations. After the overall ABCD matrix of
the cascaded network chain is evaluated from that of each sub-
network, the time of response of transmission lines can be ana-
lyzed. The lines may have frequency-dependent parameters and
arbitrary nonlinear terminals. Furthermore, transmission sys-
tems with branches uniform and nenuniform transmission lines
can be studied with this method conveniently. The analysis ac-
curacy and efficiency are discussed in detail.

I. INTRODUCTION

ULTICONDUCTOR transmission lines are usually
used as interconnections in large-scale high-speed
integrated circuits. When the signal speed is relatively
high, analysis of the time response of such lines becomes
necessary to properly design and analyze integrated cir-
cuits. Many authors [1]-[7] have studied various kinds of
transmission lines with various methods. Relatively
speaking, the methods and techniques for uniform trans-
mission lines are more mature and perfect. For nonuni-
formly coupled transmission lines, papers such as [6], [7]
have devoted some efforts to the analysis, but the fre-
quency-dependence of line parameters (such as that of re-
sistance due to the skin effect) wasn’t dealt with in these
papers. In a recent paper [8], tapered transmission lines
were investigated by the method of scattering parameters.
The frequency-dependence of scattering parameters due
to the change in effective dielectric constant was consid-
ered.
In this paper, a method of equivalent cascaded network
chain is developed to analyze the time response of non-
uniform transmission lines. N-conductor nonuniform lines
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are considered to be equivalent to a cascaded chain of a
series of 2N-port subnetworks. Each subnetwork is ap-
proximated to be made of N-conductor uniform lines with
fairly short length. The ABCD matrices of these subnet-
works can be derived by solving the telegraphers’ equa-
tions in the frequency-domain, with the solutions in the
form of matrix exponentials. To calculate the matrix ex-
ponentials, we expanded them into matrix infinite series,
then the expansions of the subnetwork ABCD matrices are
gotten with very simple series terms. From the expansions
a useful property of the subnetwork ABCD matrices rel-
evant to frequency is proven. As long as the number of
subnetworks is large enough to reflect the line nonuni-
formity, the series will converge so fastly that only a few
of low-order series terms are good approximations to the
subnetwork ABCD matrices. Segmenting the nonuniform
lines into many subnetworks has two advantages. One is
that it deals with the nonuniformity of lines, another is
that it makes the expanded series converge more fastly.
After the ABCD matrices of all subnetworks have been
evaluated, the overall ABCD matrix of the cascaded net-
work chain can be obtained simply. Combined with the
boundary conditions and the techniques of fast Fourier
transform and numerical convolution, analysis of the time
response can be made. Nonuniform lines having fre-
quency-dependent parameters and arbitrary terminals can
be analyzed in this way. Furthermore, transmission sys-
tems with branches of uniform and nonuniform transmis-
sion lines can be investigated. The errors and the advan-
tages over some other existing analysis methods are
discussed in detail before concluding this paper, which
demonstrates that this method of equivalent cascaded net-
work chain is reliable and efficient when applied to ana-
lyze nonuniform transmission lines.

II. THEORY

Consider the multiconductor transmission line illus-
trated in Fig. 1. Under the quasi-TEM approximation, it
satisfies the telegraphers’ equations, which can be written
in the frequency-domain as

MV (x, wl/ox = —[Z(x, w)] [I(x, w)] (1a)
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Fig. 1. A nonuniform multiconductor transmission line.

3llx, w)/ox = —[¥(x, w)] [V(x, W]

where [V(x, w)], [I(x, w)] are the column voltage and cur-
rent vectors at position x and angular frequency w, and

[ZCx, W)l = [R(x, w)] + jwlL(x, w)]
[Yx, w)] = [G(x, w)] + jw[C(x, w)]

with [L(x, w)], [C(x, w)], [R(x, w)] and [G(x, w)] being
the inductance, capacitance, resistance and conductance
N by N (N is the number of signal conductors) matrices
per unit length. For nonuniform lines, (la) and (1b) al-
most cannot be analytically solved except for a few spe-
cial kinds of transmission lines such as single exponential
lines. In this chapter the nonuniform transmission lines
are considered to be equivalent to a cascaded chain of
many subnetworks to get the numerical solutions.

(1b)

1. Egquivalent Cascaded Network Chain of Nonuniform
Lines

Let the nonuniform transmission line with a length H
in Fig. 1 be uniformly segmented into m sections (see
Fig. 2), then the length of each sectionis h = H/m. If m
is large enough, all sections can be approximated to be
uniform, i.e., [Z(x, w)] and [Y(x, w)] stay constant within
every section. Let [V}, [I[](i = 1,2, -+, m + 1) denote
the voltage and current vectors at the ith segmenting point:

Vil = V(G — Dh, w)

(7] = UG — Dh, w.

[Z;] and [Y;] denote the [Z(x, w)] and [Y(x, w)] at the ith
segmenting point. Such segmenting way actually seg-
ments the nonuniform lines into m cascaded subnetworks,
which are made of short uniform lines. From the theory
of network analysis, it is most convenient to calculate the
overall network parameters of a cascaded network chain
if ABCD matrices are taken. If {A4,] is the ABCD matrix
of the ith subnetwork, [A] is the overall ABCD matrix,

then
A1V, V.
([ ,]> ) <[ ,H])
1] AN
V Vm+
<[ 1]> _ <[ 11>
] Uy 1]

1 .
_ <[A 1 [A2]> <[Vm 1]> ob)
[43] 1441/ \ [+l

(2a)

[Vael

I i

LOAD NETWORK

Fig. 2. The equivalent cascaded network chain of a nonuniform line.

(] = [A] [4.] - - - [4,] ©)

where [A1], [A2], [A3] and [A4] are matrix partitions of
[A]. Note that all subnetworks are made of uniform lines,
so their ABCD matrices can be analytically derived from
the solutions of the telegraphers’ equations in the fre-
quency-domain [9]:

[V] = 5" + ¢RIy 1y, ]

+ 5 = TN ZA ] @)
] = .S[Z717(ePI* + e 7B [Z0) 14 1]
+ 52T — e V)
i=1,2,-++,m (4b)
where
(81 = (1Z] ¥/
[Z7]1 = [817'1Z] = [B] Y]
so we have ‘
[A1] [42]
4] = <[A3,] [A 4,]> (52)
in which
[41,] = .5(e!P1h + ¢ 7LRIR (5b)
[42]] = .5(e'PIh — ¢ 1By 7% (5¢)
[43] = .5[Z])7'(e'W" — 7170 (5d)
[44,] = S[Z 7 e PIh 4 ¢ T1BIRy 129 (Se)

These expressions are accurate for each subnetwork under
the uniform approximation. In the next section the matrix
exponentials encountered in these expressions are ex-
panded into infinite matrix series to numerically calculate
the subnetwork ABCD matrices.

2. Calculation of the Subnetwork ABCD Matrices

In the expressions of the subnetwork ABCD matrices
derived in the above section, there are matrix exponential
and matrix square root operations, which are usually re-
dundant. Several methods, such as mode decomposition,
Laplace transform, and the method of undetermined coef-
ficients [10], can be used to calculate the matrix exponen-
tials, but these methods are inconvenient and time-con-
suming to perform on computers, so here we expand the
matrix exponentials into matrix infinite series. The matrix
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square root operation is eliminated as a by-product. Then
the expansions of the subnetwork ABCD matrices are ob-
tained with very simple series terms. The infinite matrix
series of e!?1" and e 1A% are [10]:

eBh = 1 4 [B]h + —21—,([Bi]h)2
1
+.~+EMMWP“

e =1 — [B1h + 5 (1KY

<1f

+ e (B1R +

Inserting these series into expressions (5b)-(5e), and not-
muﬂywwmmWJMd

[41,] =1 + 5 [Z] [Y]h* +

+~—l~—uznnm5“‘+

2k — 2)!
=[g] +1la)] + - +lad + - ©)
[42] = Z1h + 5, Z) ) Z) +
S PN IR
+ Gy (B Rz h %)
[%J=MM+%DQMHMMW+
_t =1 L L
+ Gy Iz R+ ®)
MM=1+%WMMW+
____1 2\k—1
+ Gy T2+ ©)
where
______1_ Ty -1 _
e = gy (121 ¥R k=1,2,

In paper [9] several properties of [A1;], [42;], [43;] and
[44,] are given, the most helpful one for calculating the

subnetwork ABCD matrices is that [41;] = [44,]7. Here
another userful property is derived:
[4,w)] = [A1;(=w)]* (10a)
[42;(w) = [42;(—w)]* (10b)
[43;(w) = [43;(—=w)]* (10c)
[44,(w)] = [44;(—wW)]* (10d)

e., [A1;(w)], [42;(w)], [A3;(w)] and [A4;(w)] are the
conjugate matrices of [A1;(—w)], [42;(—w)], [A3;(—w)]
and [A4;(—w)], respectively.

Proof: From the physical point of view, generally
we have

[R;(wW)] = [R;(—w)]

[ILiw)] = [Li(—w)].
Hence,

[Z,(w] = [Z,(—wW)]*
similarly,

[Y;w)] = [Y(=w)]*

According to the property of complex function, there is

[ZwW] [Y; W] = (Z;(=w)] [Y;(=w)D*

s0 (10a)-(10d) are right from (6)-(9) for [A1,], [42,], [43/]
and [A44.].

The matrix infinite series (6)-(9) are absolutely con-
vergent, and their convergence rates are in relation with
the magmtude of each eigenvalue (| N\, 4|, i = 1, 2,

m k=12, , N) of the product of [Z][Y]h2 The
smaller the magmtude of A; ;, the better the convergence
rates. From the definition of eigenvalue:

[Z] (Y] h%lei ] = Noled (11)

where [e; ;] is the eigenvector corresponding to A, ,, it can
be seen that for given transmission lines, i.e., for given
product of [Z;][Y;], larger number (m) of subnetworks will
produce smaller | \; ;| and better convergence rates. Ac-
tually, as long as the number () of subnetworks is large
enough (& is small enough) to reflect the line nonuniform-
ity fully, these matrix series will converge so fast that
only a few of low-order series terms may be good ap-
proximations to [A1;], [42;], [A3,] and [A4,]. For example
E}Ll [a;] may be good approximation to [41;] even if k
= 3. As a special case, if only the first terms of the matrix
series (6)-(9) are retained, then this is just the well known
finite-difference approximation. ‘
From the above discussion, segmenting the transmis-
sion lines into many cascaded subnetworks has two ad-
vantages, one is that the nonuniformity of lines can be
dealed with, another is that the convergence rates of the
expansions of the subnetwork ABCD matrices become
better. There is something to be pointed out here. The
segmentation of lines here in this paper has a important
difference from that in the characteristics method [7]. In
the characteristics method, after the decoupling pro-
cedure, the effective electric length of each decoupled sin-
gle signal conductor becomes different because of the dif-
ferent transmission mode velocities of the transmission
system. Furthermore, the segmentation is restricted by the
value of time steps. This makes it difficult to segment each
decoupled conductor into integer number of sections at
the same time, and suitable rounding off must be taken.
This will introduce errors to the time response analysis of
transmission lines, especially of quiescent lines. While
the segmentation in the method in this paper is carried out
independently, the number of time samples and the length
of time steps have no influence on it, so this problem
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doesn’t arise. On the other hand, unlike the finite-differ-
ence method, several low-order series terms (not the first
term only) are retained here, so the number of subnet-
works is unnecessarily very large to get high accuracy.

After the ABCD matrices of all subnetworks have been
obtained, (3) is then used to calculate the overall ABCD
matrix of the cascaded network chain which is the equiv-
alent of the original transmission line to be analyzed. With
the boundary conditions known, time response analysis
can be performed as follows.

3. Analysis of the Time Response of Transmission Lines
Noting that [V,] = [V(0, w)], [1;] = [1(0, w)], [V,, 1]
= [V(H, w)] and [1,,, ;] = [I(H, w)], from (2b) there are
[V0, w = [Al]l [V(H, w)] + [42] I(H, w)]  (12a)
[1(0, w)] = [44] LI(H, w)] + [4A3] [V(H, w)]. (12b)

Equations (12a) and (12b) combined with the boundary
conditions are enough to carry out the time response anal-
ysis. For linear terminals, the boundary conditions can be
expressed in the frequency-domain:

[V(0, w1 = [EW)] ~ [Z1w)] [1©0, w)]  (13a)

[V(H, w)l = [22W)] [I(H, w)] (13b)
in which [Z1(w)] and [Z2(w)] are the Z-parameters of the
starting network and load network respectively, [E(w)] is
the Fourier transform of source voltage vector. After the
analysis at each discrete sample frequency is performed,
the time response can be obtained by the inverse fast
Fourier transform (IFFT). For nonlinear terminals, the

boundary conditions are generally given in the time-do-
main:

[V, 01 = AIIO, H] + [EWD)] (14a)
[V(H, 1) = f(I(H, 1) (14b)

in which fi(*) and f;(-) indicate two nonlinear functions.
Inversely Fourier transforming equations (12a) and (12b)
yields '

[V, 9] = [M1(] * [VH, 9] + [42(] * [I(H, 0]
(15a)

O, 0] = [44()] * [I(H, 9] + [43(1)] * [V(H, 1)]
(15b)

where [A1(?)], [42()], [4A3(?)] and [A44(2)] are the inverse
Fourier transforms of [A1(w)], [4A2(w)], [A3(w)] and

[A4(w)] which can be obtained by the technique of IFFT,

““#”” denotes a convolution, for example:

t

[41(] = [V(#H, 1] = SO [41¢ — DI [V(H, 1] dr

in which the integration can be approximated by a sum-
mation when calculated on computers. The system of
equations (14a), (14b), (15a) and (15b) is nonlinear and
can be solved by the Newton-Raphson method marching-
on-in-time to obtain the time response [V(0, 1], [1(0, 9],

[V(H, 1] and [I(H, ?)]. After the waveforms at the two
terminal ends of transmission lines are obtained, the re-
sponse at any segmenting points within the two ends can
be evaluated, which is easy to see from Fig. 2.

Uniform transmission lines can also be analyzed by this
method, but the most economical way is to consider a
whole transmission line to be one subnetwork and evalu-
ate the ABCD matrix with the mode decomposition
method. As to complicated transmission systems with
branches of uniform and nonuniform lines, both the meth-
ods can be used, i.e., the nonuniform lines are segmented
into a series of cascaded subnetworks the ABCD matrices
of which can be obtained through the expansions of ma-
trix exponentials, while the uniform lines are equivalent
to only one subnetwork the ABCD matrix of which can be
evaluated by the mode analysis. Thus much CPU time
will be saved. After the ABCD matrix of each branch is
obtained, the overall ABCD matrix of the transmission
system can be evaluated according to the connecting
mode. Combined with the boundary conditions at the ter-
minal ends of the branches, time response analysis can be
performed in a similar way to that described above.

-III. NumericaL EXAMPLES

Example 1: A Linearly Loaded Two-Conductor
Nonuniform Line (Fig. 3)

The transmission system in this example is similar to
that described in [6]. The line parameters are

Ix) = 387/(1 + k(x))

L) = k(x)I(x)

c(x) = 104.13/(1 — k(x))
Cn(x) = —k(x) c(x)

k(x) = .25(1 + .6 sin (zx + 7 /4))

AN
rix) = 1.2 <E> , ) =20

g(x) = gn(x) = 0

where I(x), c(x), r(x) and g(x) are the diagonal elements
of the 2-by-2 inductance, capacitance, resistance and con-
ductance matrices respectively, the unit of which are
nH/m, pF/m, @/m and nS/m; [,,(x), ¢,(x), r,(x) and
gn(x) are the corresponding second diagonal elements.
The unit of w is MHz. The crosstalk voltage at the middle
point of the quiescent line given in Fig. 4 compares fa-
vorably to that given in [6], which ensures the reliability
of this method. -

Example 2: A Nonlinearly Loaded Three-Conductor
Nonuniform Line

The crossectional view and schematic of the transmis-
sion system in this example are given in Fig. 5. There
have been many papers published for approaching the dis-
tributed parameters for multiconductor transmission lines
[11], [12], and here the method and program given in [13]
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Fig. 3. The transmission system in example 1.
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Fig. 4. The crosstalk voltage at the middle of the quiescent line in example
1.
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Fig. 5. The cross sectional view (a) and schematic (b) of the transmission
system in example 2.

is used. Because the transverse sections of the signal con-
ductors in this system are fairly small, the resistances are
approximated to be the dc values and independent of fre-

quency. So are the other parameters. The nonlinear loads
are characterized by the relation:

i=10E* -1

where i is the current in nA following through the loads
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Fig. 6. The response voltages in example 2.

and v is the corresponding drop in V. Fig. 6(a) and (b)
show the response obtained with this method.

Example 3: A Transmission System with Branches of
Uniform and Nonuniform Lines

The schematic of the transmission system in this ex-
ample is given in Fig. 7. It includes two branches of uni-
form lines and one branch of nonuniform line. The non-
uniform line is just that in example 1, and the two uniform
line branches have the same parameters:

309 21.7
£ = | 21.7 309 }nH/m’
144 -6.4
V=1 64 1aa }pF/m
R - (524 33.9} . <M>1/2 w2/
| 33.9 524 27 ’
905 —11.8] |w
G1=1_118 oos } ' 12-;|n3/m

in which w is still in MHz. Fig. 8(a) and (b) show parts
of the response waveforms. Note that the voltages (V5
and V6 in figure) at the end of branch #3 are very small
in magnitude. This can be understood as that-the induc-
tances connected in series in this branch are unfavorable
for high speed signals to transmit.

In the above three examples, the numbers of frequency
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Fig. 7. The transmission system in example 3.
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Fig. 8. The response voltages in example 3.

and time samples are all 256, the numbers of low-order
series terms taken are all 4, and the numbers of cascaded
subnetworks for nonuniform lines are 80, 60, and 80 re-
spectively. On a computer of PC-386/20, the CPU times
of these examples are all a few minutes.

IV. ERROR AND CALCULATION EFFICIENCY ANALYSIS

Apart from the aliasing errors introduced by the finite
sample points for FFT and IFFT, there are two factors in
this method which may bring errors to the transient anal-
ysis, one is the approximation that all subnetworks are
made of uniform lines, another is the fact that only a few
terms of the matrix infinite series are taken. Obviously,
the more the terms of series taken, the more accurate the

evaluation of the subnetwork ABCD matrices. However,
if we enlarge the number () of subnetworks, three things
will occur. One is that the uniformity approximation for
each subnetwork will be more reasonable; the second is
that the convergence rates of the expansions of matrix ex-
ponentials will be better, so the evaluation of the subnet-
work ABCD matrices will become more accurate with the
same number of series terms taken; the last is that the
number of times of error accumulation will be larger. Ap-
plication practices show that the overall result of these
three factors is that the analysis accuracy will be higher
with more subnetworks if a suitable number of low-order
series terms is retained. So there are two ways for getting
a given accuracy: enlarging the number of subnetworks
and enlarging the number of low-order series terms taken.
But under the presupposition that the number of subnet-
works is large enough to reflect the line nonuniformity
fully, enlarging the number of low-order series terms is
more efficient to save the CPU time, which can be seen
from the expansions (6)-(9). As a criterion, m is usually
chosen to be only large enough to reflect the line nonun-
iformity (i.e., further enlarging the value of m will not
change the results), then necessary number of series terms
is taken to get high accuracy. This is the main advantage
of the method in this paper over the finite-difference ap-
proximation where very large m is required to get high
accuracy, and sometimes divergent results may occur due
to the too many times of error accumulation, especially
when the terminals are nonlinear.

Differing from the mode analysis method or the scat-
tering parameter method, the procedure of mode decom-
position in the frequency-domain is omitted here in this
method by introducing the ABCD matrices of transmis-
sion lines, so there is no necessity of tracing the incident
and reflective waves, which makes the time response
analysis procedure more simple. As mentioned before, the
matrix exponentials in the expressions of the subnetwork
ABCD matrices can also be calculated by the mode de-
composition method. In order to ensure the reliability and
advantage in computation speed of (6)-(9). One uniform
transmission line in example 3 (branch #1 or branch #2)
is considered. The ABCD matrix of this line is accurately
computed by the mode decomposition method using (5b)-
(5¢), and numerically computed by segmenting this line
into 80 sections. Four terms of the infinite matrix series
in (6)-(9) are taken when computing the ABCD matrix of
a section. Comparison of the results is given in Table I.
Note that 1, and ¢, in the table are comparable because the
computation time of the mode decomposition method is
independent of the line length. Transmission lines with
larger N have also been studied and similar results are
obtained (both #, and ¢, are proportional to N*). The table
also shows that the lower the frequencies, the less the er-
rors for the ABCD matrices. This property is beneficial
for improving the analysis accuracy, because for general
signal pulses, the magnitudes of the components at lower
frequencies are larger than that at higher frequencies.
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TABLE I
COMPARISON OF THE ABCD MATRIX VALUES AND COMPUTATION TIMES
ABS1 ABS2
Frequency 1000 ¢, 1000 ¢,
(GHz) Appr. Accu. Appr. Accu (second) (second)
5 0.1832 0.1832 38.95 38.95 3.79 17.14
10 0.3746 0.3746 37.10 37.10 3.79 16.21
15 0.06819 0.06820 3.260 3.261 3.79 16.26
20 0.6201 0.6201 25.66 25.67 3.79 17.13
25 0.8200 0.8221 19.33 19.39 3.79 16.37
30 0.1891 0.1960 1.793 1.762 3.79 17.13

ABS1—the magnitude of [41(1, 2)]; ABS2—the magnitude of [42(2, 2)]; ¢,—the computation time for
[A1] and [42] in the mode decomposition method; z,—the computation time for [41;] and [A42,] of a section

in the numerical method.

V. CONCLUSION

Analysis of the time response of nonuniform transmis-
sion lines is carried out by segmenting the transmission
lines into a series of cascaded subnetworks in this paper.
All subnetworks are approximated to be made of short
sections of uniform lines, the ABCD matrices of which
can be obtained from the expansions of their analytic
expressions derived from the solutions of telegraphers’
equations in the frequency-domain. There are two advan-
tages in segmenting the lines: one is that the nonunifor-
mity of lines can be dealt with; another is that the ex-
panded matrix infinite series can converge faster. As long
as the number of subnetworks is large enough to reflect
the line nonuniformity, a few of low-order series terms
will be good approximations to the subnetwork ABCD

matrices. A wide range of transmission systems can be
analyzed by this method with little CPU time and satis-

factory accuracy.
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